INTEGRAL UNIVERSITY, LUCKNOW

SYLLABUS & EVALUATION SCHEME

for

M.TECH. BIOTECHNOLOGY

(with effect from 2020-2021)

(Students admitted 2020 onwards)

Integral University M. Tech. Biotechnology (with effect from Session 2020-2021) (Students admitted 2020 onwards)

1st Year

1st Semester

S.	Course	Subject	Subject	Pe	eriod	ls ai	nd	Eval	uatior	n Schem	e	Subject
No.	Category	Code			Cre	dits		Sessional (CA)			(ESE)	Total
				L	Т	P	C	СТ	TA	Total		
1	DC	BE-501	Biochemistry	2	1	0	3	40	20	60	40	100
2	DC	BE-502	Bioanalytical Techniques	3	1	0	4	40	20	60	40	100
3	DC	BE-503	Microbial Genetics and Technology	2	1	0	3	40	20	60	40	100
4	DC	BE-504	Cell and Molecular Biology	3	1	0	4	40	20	60	40	100
5	DC	BE-505	Bioprocess Engineering	3	1	0	4	40	20	60	40	100
6	DC	BE-506	Biochemistry and Microbiology Lab	0	0	6	3	40	20	60	40	100
Total	·	•		13	5	6	21	240	120	360	240	600

BIOCHEMISTRY BE-501

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: This course is designed to introduce the organic structure of living systems mainly dealing with biomolecules like carbohydrates, proteins, lipids, enzymes and their metabolism. This course will lay the foundation for other advanced courses like physiology, cell biology, molecular biology and metabolic engineering.

	Carbohydrates		
	Structure and properties of mono, di, oligo and polysaccharides;		
	complex carbohydrates, TCA cycle, glycolysis, gluconeogenesis,		
	pentose phosphate shunt. Respiratory chain, ATP cycle, energy rich		
	compounds.		
UNIT II	Lipids	8	
	Structure and properties of fatty acids, Glycerolipids, phospholipids,		
	sphingolipids, Glycolipids, steroids. Biosynthesis and degradation of		
	fatty acids and cholesterol.		
UNIT III	Proteins	8	
	Structure and properties of amino acids, peptides, proteins and		
	conjugated proteins. Urea cycle. Biosynthesis and degradation of amino		
	acids and proteins.		
UNIT IV	Nucleic Acids	8	
	Structure and properties of purines, pyrimidines, nucleosides,		
	nucleotides, polynucleotides. Ribonuclic acid and deoxyribonucleic		
	acids, nucleoprotrein complexes. Biosynthesis and degradation of		
	purines, pyrimidines and nucleic acids.		

Text Books:

- 1. Nelson & Cox, Lehninger's Principles of Biochemistry, 5th Edition
- 2. Harpers Biochemistry, McGraw Hill
- 3. Stryer, Biochemisrty, Freeman.
- 4. Donald Voet, J.G.Voet, Biochemistry, John Willey. Voet & Voet, "Biochemistry".

BIOANALYTICAL TECHNIQUES BE-502

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Course Objective: The paper will help students to acquaint with basic instrumentation, principle and procedure of various sophisticated instruments like HPLC, FACS, GLC and NMR etc. This will enable the students to implement the use of these techniques in biological research and in discovering new products/compounds.

UNITI	Centrifugation	8
	Centrifugation: types of rotors; principles and application of	
	differential, zonal, density gradient and ultra-centrifugation.	
UNITII	Electrophoresis and Chromatography	8
	Electrophoresis: principles and applications of moving boundary and zone electrophoresis including gel electrophoresis (PAGE, starch, agarose and Pulse Field gel Electrophoresis), isoelectric focusing, isotachophoresis; Chromatography: Adsorption, partition, ion-exchange, reverse phase, covalent, gel filtration, affinity, gas chromatography,	
UNITIII	HPLC and FPLC.	8
	Spectroscopy and MicroscopyBasic Principles of Spectroscopy: UV-visible, atomic absorption,ESR, NMR, IR, mass and plasma emission spectroscopy.Microscopy: Simple, compound, phase contrast, electron(transmission, scanning) and confocal microscopy.	U
UNITIV	Radiotracer Technology	8
	Radiotracer technology, use of radioactive isotopes in biological system; autoradiography, Geiger-Muller counter, Liquid scintillation counter; CD;ORD;X-ray crystallography; Biosensors; Flow cytometer; Freeze drying; Amino acid analyzer.	
UNITV	Environmental Analytical Techniques	8
	Analysis of Biomass; measurement of dry weight and biomass composition; Measurement of BOD and COD in Waste-Waters; Gas Analysis for O ₂ and CO ₂ ; Flow injection analysis.	

- 1. Wilson K, Walker J, Walker JM, "Principles and Techniques of Practical Biochemistry".
- 2. Sambrook J, Russell DW, Sambrook J, "Molecular Cloning: A Laboratory Manual".
- 3. William M, O'Leary Robert, Dony Wu,"Practical Handbook of Microbiology".
- 4. Brown, TA, "Gene cloning: An introduction".
- 5. Cantor CR, Schimme IPR, "Biophysical Chemistry".
- 6. Lehninger A, "Principles of Biochemistry".
- 7. Voet & Voet, "Biochemistry".

MICROBIAL GENETICS & TECHNOLOGY

BE-503

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The course is designed to understand the basics of microbial growth, reproduction, methods of genetic exchange. It will also focus on the media design, modes of operation of fermenter for large scale biomass and product formation and industrial applications of microbes

UNIT I	Microbial nutrition and growth	8
	Principle of microbial nutrition, formulation of culture media, selective media, factors influencing the choice of various carbon and nitrogen sources, vitamins, minerals, precursors & antifoam agents; Importance of pH; Starter culture; Principles of media and air sterilization; kinetics of thermal death of cells & spores, design of batch and continuous thermal sterilizer, sterilization of air, design of filter; Radiation, chemical and steam sterilization	
UNIT II	Microbial growth kinetics under different culture systems	8
	Kinetics of microbial growth, substrate utilization and product formation: growth phases of a batch culture, synchronous culture, determination of kinetic parameters by batch, fed batch and continuous culture; Analysis of chemostat performance. Kinetics of growth & product formation by filamentous organisms; Role of maintenance and endogenous metabolism in substrate utilization & growth; structured models: Compartmental models; Gaden's and Deindoerfer's classifications	
UNIT III	Applied Microbial Genetics	8
	Horizontal gene transfer (Conjugation, transduction and transformation), Complementation, Molecular recombination, Mapping of bacterial genes; Genetic and physical maps; Replication of RNA tumor viruses	
UNIT IV	Microbial Technology	8
	Isolation, maintenance and preservation of industrial strains. Strain improvement, screening and selection of industrially important microbes. Large scale production and commercial applications of enzymes: proteases and amylases ; solvents and antibiotics: acetic acid, ethanol, acetobutanol, penicillin and streptomycin	

Books Suggested:

1. Bailey J E and Ollis DF, "Biochemical Engineering fundamentals".

2. Stanbury PF, Whitaker A, "Principles of Fermentation Technology".

- 3. "Principles of Cell Energetics": BIOTOL series, Butterworth Heinemann.
- 4. Moser A, "Bioprocess Technology Kinetics & Reactors".
- 5. Schugerl K, "Biotechnology" Vol.4 Meaning Modeling and Control.
- 6. Atkinson B, Mavituna F, "Biochemical Engineering and Biotechnology Handbook".
- 7. Goodenough U, "Genetics".
- 8. Swanson G P, Mertz & Young, "Cytogenetics".
- 9. Luria & Darnell, "General Virology".
- 10. Strickberger MW, "Introduction to Genetics".
- 11. Pirt SJ, "Principles of Microbe and Cell Cultivatio

CELL & MOLECULAR BIOLOGY BE-504

w.e.f. Session 2020-21

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Objective: The objective of the course is learning and understanding the fundamentals of molecular biology and cellular signalling. The application of the course focuses on fundamental concepts and their implications on disease processes.

UNIT I	DNA replication	8
	Initiation, elongation and termination; Roles of DNA Polymerase I, II,	
	III, DNA ligase, DNA gyrase, Topoisomerases, Primase, Helicase, HD	
	protein; Okazaki fragments; RNA primers; Repair by DNA	
	polymerase I and DNA ligase; Eukaryotic replication; Regulation of	
	prokaryotic and eukaryotic replication; Fidelity of replication End	
	Replication and Role of Telomerase.	
UNIT II	Transcription	8
	Transcription: Prokaryotic and eukaryotic transcription: Initiation, elongation and termination; DNA - dependent RNA polymerase (RNA Pol in prokaryotes and RNA Pol I, II, III in eukaryotes): Physical properties, subunit structure; Sigma cycle; Promoter; Enhancer and other regulatory elements; Transcription factors; RNA - dependent DNA polymerase; Reverse transcription. Post- transcriptional / Co-transcriptional processing: Maturation of rRNA, mRNA, tRNA; 5` capping; RNA splicing; Alternative splicing; RNA editing; Poly A tail formation; Regulation of transcription in both prokaryotes and eukaryotes. mRNA stability, Nuclear export of mRNA and its regulation . Inhibitors of transcription and their mechanism of action.	
UNIT III	Translation and Gene RegulationGenetic code: Evidence for a triplet code; Properties of the codesequential; Ubiquitous (almost); Degenerate; Wobble hypothesis,Nonsense codons; Sense codons; Translation: Activation of aminoacids; Charging of tRNA; Adapter role of tRNA; Amino acyl tRNAsynthetase; Initiation, elongation and termination of translation inprokaryotes and eukaryotes; A, P and E sites of ribosomes; Roles ofinitiation, elongation and release factors; Ribosome recycling;Inhibitors of translation, Post - translational processing; Proteintargeting: targeting of secretory proteins - targeting to endoplasmicmembrane, golgi complex, lysosomes and plasma membrane; ProteindegradationUbiquitin-ProteosomePathwayFidelityoftranslationConcept of operon: lac and trp operons, Attenuation,	8

	RNA	
	Interference, Chromosome remodeling and Histone modification.	
UNIT IV	DNA mutation and Danain	8
UNITIV	DNA mutation and Repair	o
	Mutation: Spontaneous, induced; Chemical and physical mutagens;	
	Non sense mutation; Missense mutation; Frame shift mutation;	
	Suppressor mutation; Different methods of DNA repair and SOS	
	response; Methods to assess genotoxicity. Transposition	
UNIT V	Cell Signalling	8
	Cell division; Cell cycle and role of cyclin dependent kinases in its	
	regulation; Cell - cell interaction, Extracellular Matrix, Structure	
	and organization of actin and myosin; Microtubules and	
	Intermediary filaments; Organization and function. Apoptosis and	
	factors governing apoptosis; Basics of signal transduction: Synthesis	
	and regulation of signalling molecules, G protein and phospholipids	
	signaling, cyclic nucleotides, role of calcium in signaling, protein	
	kinases as primary elements in signaling.	

- 1. Lewin, "Genes".
- 2. Freifelder DM, "Molecular Biology".
- 3. Brown T A, "Genomes".
- 4. Watson J D, "Molecular Biology of the Gene".
- 5. Twyman R M, "Advanced Molecular Biology".
- 6. Brown T A, "Gene cloning: An introduction".
- 7. Old & Primrose, "Principles of Gene Manipulation".
- 8. Primrose S B, "Molecular Biotechnology".
- 9. Cibelli J B, Robert P, Keith L, Michael C, West D, "Principles of Cloning".
- 10. Voet&Voet, "Biochemistry
- 11. Stryer L, "Biochemistry".

BIOPROCESS ENGINEERING BE-505

	DI COC				
Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Objective: Students are made capable of designing protocols for industrial scale production of medicinally and commercially important metabolites. Students can develop better understanding and perform more efficiently in commercial as well as research areas associated with medical research, food processing, agriculture, pharmaceutical development, waste management, and numerous other fields of science and industry.

UNIT I	Introduction to Bioprocess and Engineering calculations	8
	Role of process engineering principles in biotechnological industries,	
	Current scenario of biotechnological industries, Dimensional analysis,	
	Dimensionless numbers and their significance in Heat, Mass and	
	Momentum transfer, Method/Process validation.	
UNIT II	Material and Energy Balances	8
	Steady state and unsteady state Material and Energy Balance calculations.	
UNIT III	Fluid mechanics	8
	Fluids vs solids, Fluid statics and applications including manometer;	
	Mass and energy balances in fluid flow; Bernoullis equation, its	
	corrections and applications including pump work; Newton's law of	
	viscosity; Measurement of viscosity of fermentation broths; flow curves	
	for Non- Newtonian fluids and examples from bioprocess fluids;	
	Pressure drop due to skin friction; Significance of friction factor and	
	Reynold's number; Boundary layer theory and form friction; Pressure	
	drop due to form friction; Flow past immersed bodies and drag coefficients; Pressure drop in flow through packed beds; Fluidization	
	and Pressure drop across fluidized beds; Flow machinery and control:	
	overview of valves and pumps.	
UNIT IV	Heat transfer	8
	Heat transfer requirements of microbial cultivations including	
	correlations for the determination of heat transfer coefficients; Models	
	of heat transfer and examples; Fourier's law of heat conduction and	
	analogy with momentum transfer, heat transfer through a cylindrical	
	pipe wall; Convection and concept of heat transfer coefficient,	

	application of dimensional analysis to heat transfer from pipe to a flowing fluid; Thermal boundary layer and Prandtl number; Overall heat transfer coefficient; Correlations for heat transfer coefficients in natural and forced convection; Overview of heat exchangers and concept of LMTD.	
UNIT V	Mass transfer Diffusion and mass transfer: Fick's law of diffusion; Analogy with momentum and energy transport; Diffusivities of gases and liquids; Fundamentals of mass transfer: Theories of mass transfer, concept of mass transfer coefficient, correlation for mass transfer coefficients, Oxygen requirements of microbial culture: oxygen mass transfer fundamentals, oxygen transfer and oxygen demand, oxygen transfer by aeration and agitation, determination of oxygen transfer coefficient by various methods including sulfite oxidation, dynamic gassing out and oxygen balance methods, factors affecting oxygen transfer coefficients.	8

- 1. McCabe WL, Smith JC, Harriot P, "Unit operations of Chemical Engineering", Mc Graw-Hill.
- 2. Cussler EL, "Diffusion" Cambridge University Press.
- 3. Doran PM, "Bioprocess Engineering Principles", Academic Press.
- 4. Pirt SJ, "Principles of Microbe and Cell Cultivation".

BIOCHEMISTRY & MICROBIOLOGY LAB BE-506

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	0	0	6	3

Objective: The lab is designed to train the students in basic and some advanced techniques of Biochemistry like isolation, purification, and estimation of biomolecules. It also deals with microbial techniques of isolation, purification and maintenance of microbial cultures.

Microbiology:

- 1. Maintenance and identification of microorganisms.
- 2. Biochemical Characterization of microbes
- 3. Analysis of various pigments in cyanobacteria
- 4. Standardization of growth curve of different microbes

Biochemistry:

- 5. Electrophoresis in Agarose and SDS gels
- 6. Membrane separation of proteins
- 7. Extraction of phytochemicals and thin layer chromatography
- 8. Estimation of carbohydrates-glucose and starch
- 9. Estimation of proteins and nucleic acid

Reference:

- 1. J.Jayaraman, Lab Manual in Biochemistry, Wiley Eastern LTd
- 2. Bergey's Journal of Determinative Biotechnology Edn
- 3. Collins and Lyne, Microbiological Methods, Butterworths, Singapore, 5thEd.
- 4. Plummer, An Introduction to Practical Chemistry, Tata-McGraw Hill, New Delhi, 3rd Ed.

Integral University M. Tech. Biotechnology (with effect from Session 2020-2021) (Students admitted 2020 onwards)

1st Year

2nd Semester

S.	Course	Subject	S. L. A	Pe	erioo	ls a	nd	Evalu	ation S	cheme		Subject
No.	Category	Code	Subject		Cre	dits	5	Sessional (CA)			ESE	Total
	0.			L	Τ	P	С	СТ	ТА	Total		
1	DC	BE-507	Fermentation Technology	3	1	0	4	40	20	60	40	100
2	DC	BE-508	Downstream Processing	2	1	0	3	40	20	60	40	100
3	DC	BE-509	Genetic Engineering	2	1	0	3	40	20	60	40	100
4	DC	BE-510	Enzyme Engineering	3	1	0	4	40	20	60	40	100
		BE-512	Nanobiotechnology									
5	DE	BE-513	Plant Cell Technology	2	1	0	3	3 40	0 20	60	40	100
5	J DE	BE-514	Pharmaceutical Biotechnology		1	0						100
		BE-515	Bioreactor Engineering									
6	DC	BE-511	Fermentation Technology & Genetic Engineering Lab	0	0	6	3	40	20	60	40	100
7	DC	BE-516	Applied Microbiology and Biotechnology	2	1	0	0	40	20	60	40*	100*
	•		Total	14	6	6	20	240	120	360	240	600

 \ast A zero-credit foundation course. Candidate has to pass the course by securing at least 50% marks

FERMENTATION TECHNOLOGY BE-507

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Objective: The objectives of this course are to develop the understanding of ideal and non-ideal bioreactors, introduce concepts of heterogeneous reaction system, Develop understanding of strategies for scale-up of bioreactor, built concepts of control and monitoring in bioreactors.

UNIT I	Analysis of Ideal Bioreactors	
	Analysis of ideal bioreactors: The ideal batch reactor, Continuous	0
	Stirred Tank Reactor (CSTR), series of CSTRs, turbidostat, chemostat,	8
	fed batch, plug flow reactors	
UNIT II	Heterogeneous Reaction Systems	
	Heterogeneous reaction systems: Zero order and First order kinetics of	
	concentration profile with reference to spherical geometry and other	8
	shapes, Effectiveness factor, External and internal mass transfer,	
	General comments on heterogeneous reactions in bioprocessing.	
UNIT III	Monitoring, Control and Modelling of Bioreactors	
	Modeling, analysis and design of bioreactor; Control of bioreactors,	
	case studies; Solid state fermentation. Overview of methods for online	0
	and offline monitoring of bioreactors: bioprocess control	8
	methodologies; Analysis of alternate bioreactor configurations including	
	cell-recycle, air-lift, and immobilized-cell bioreactors.	
UNIT IV	Fermentative Production of Metabolites	
	Media for industrial fermentation; Large scale production of amylase,	8
	acetic acid, ethanol, penicillin and L-Lysine.	
UNIT V	Scale-up of Bioreactor	
	Scale-up of microbial bioreactors: Various approaches to scale-up	Q
	including regime analysis and scale-down; Scale-up methods by	8
	currently used rules-of-thumb viz. constant P/V, KLa etc.	

- 1. Fogler, H. S. (1999). Elements of chemical reaction engineering.
- 2. Doran, P. M. (1995). Bioprocess engineering principles. Academic press.
- 3. Bailey, J. E., & Ollis, D. F. (1976). Biochemical engineering fundamentals. *Chemical Engineering Education*.
- 4. Stanbury, P. F., Whitaker, A., & Hall, S. J. (2013). *Principles of fermentation technology*. Elsevier

DOWNSTREAM PROCESSING BE-508

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: To impart to the students the knowledge of various separation and purification techniques and enable them to design these processes.

UNIT I	Introduction to Bioprocess and Primary isolation methods	8
	Overview of a bioprocess including upstream and downstream	
	processing; Intracellular and extracellular product recovery: cell	
	disruption and extraction. Primary isolation methods including	
	separation of particulate by filtration, centrifugation, settling,	
	sedimentation, decanting, microfiltration and membrane based method;	
	Solvent extraction, sorption, precipitation, ultrafiltration and Reverse	
	osmosis.	
UNIT II	Purification methods	8
	Fractional precipitation, electrophoresis, chromatography, adsorption,	
	product polishing, crystallization, drying.	
UNIT III	New and Emerging techniques	8
	Pervaporation, Super liquid extraction, Foam based separation,	
	Lyophilization, High Throughput Screening.	
UNIT IV	Effluent Treatment	8
	Aerobic and anaerobic water treatment processes: activated sludge,	1
	trickling filter, fluidized expanded bed reactor, Upflow anaerobic sludge	
	blanket reactor.	

- 1. Roger G. Harrison, Paul Todd, Scott R. Rudge, Demetri P. Petrides, Bioseparations Science and Engineering, Oxford University Press
- 2. B.Shivshankar, Bioseparations: Priniples and Techniques, Eastern Economy Edition, PHI Learning Pvt. Ltd., Publishing House, New Delhi, 2012
- **3.** Bioseparation & bioprocessing (2nd Ed.) 2-Volume set, Ed SUBRAMANIAN Ganapathy, Wiley-VCH, (09-2007)
- 4. P.A. Belter, E.L. Cussler and Wei-Shou Hu., Bioseparations-Downstream Processing for Biotechnology, WileyInterscience Publication, 1988.
- 5. Separation and purification techniques in biotechnology, Fredreich Dechow, 1989

GENETIC ENGINEERING BE-509

Pre-requisite	Co-requisite	L	Т	Р	С
Molecular Biology	None	2	1	0	3

Objective: The course is designed to make the students understand the concept and basic steps in gene cloning, to acquaint them with various vectors and enzymes used in recombinant DNA technology, transformation and screening techniques. They will also be acquainted with modern techniques such as PCR technology, Real-Time PCR, Site-directed mutagenesis, Antisense RNA technology and RNA interference.

.

UNIT I	Enzymes used in Genetic Engineering	8
	Types of restriction enzymes, Nomenclature, Isoschizomers, Neoschizomers, Heterohypekomers, DNA digestion, Restriction mapping; Other enzymes used in Genetic Engineering: Alkaline phosphatase, DNA ligase, Reverse transcriptase, DNA Polymerase, Polynucleotide kinase, DNase, RNase, Terminal deoxynucleotidyl transferase, Taq polymerase, Topoisomerase.	
UNIT II	Cloning vectors	8
	Cloning vectors viz. Plasmids, λ phage, M13 phages, Yeast cloning vectors, Plant and animal viruses, Cosmids, Phagemids, Phasmids, Ti plasmid based vectors; Stringent and relaxed plasmids; Cloning strategies used with different vectors; Expression vectors; Linkers, Adaptors, Homopolymer tailing.	
UNIT III	Transformation	8
	Transformation of host cells, chemical induction, in vitro packaging, Agrobacterium mediated transformation, microprojectile bombardment, electroporation, and microinjection; Genomic and cDNA library construction; Subtractive hybridization.	
UNIT IV	Techniques in r-DNA Technology	8
	Techniques in r-DNA Technology: DNA sequencing; PCR, Variants of PCR, Cloning of PCR product, RACE, Real-Time PCR; Site-directed mutagenesis; Antisense RNA technology; RNA interference; Cosuppression, Molecular markers: RFLP, RAPD, AFLP, EST.	

5	tion, Southern hybridizati	on, Northe	ern hybridization, Dot
blata X			
Diots, V	estern blotting, Public conc	erns related	l to recombinant DNA
technol	gy; Safety guidelines of rDN	A research.	

- 1. Old RW, and Primrose SB, Principles of Gene Manipulation, Blackwell Scientific Pub.
- 2. Lewin B, "Genes VIII".
- 3. Winnecker EL, "From Genes to Clones".
- 4. Freifelder DM, "Molecular Biology".
- 5. Brown TA, "Genomes".
- 6. Watson JD, "Molecular Biology of the Gene".
- 7. Twyman RM, "Advanced Molecular Biology".
- 8. Brown TA, "Gene cloning: An introduction".
- 9. Old & Primrose, "Principles of Gene Manipulation".
- 10. Primrose SB, "Molecular Biotechnology".
- 11. Cibelli JB, Robert P, Keith L, Michael C, West D, "Principles of Cloning".
- 12. Voet & Voet, "Biochemistry".
- 13. Voet & Voet, "Biochemistry".

ENZYME ENGINEERING BE-510

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	3	1	0	4

Objective: To enable the students with the know-how of designing enzymatic processes and reactors, understanding enzyme kinetics, understanding and designing immobilization process and the basics of enzymatic reactions in organic media.

UNIT I	An introduction to Enzymes and applications	8
	Introduction, Allosteric enzymes, Ribozymes, Abzymes; Applications in	
	industrial, medical, analytical, chemical, pharmaceutical and food	
	sectors; Enzyme isolation and purification methods.	
UNIT II	Enzyme kinetics	8
	Michaelis-Menten kinetics, kinetics for reversible reactions; Effect of	
	various types of inhibition, evaluation of kinetic parameters; Multi-	
	substrate reactions and their kinetics.	
UNIT III	Enzyme immobilization	8
	Immobilized enzymes: Methods of enzyme immobilization, factors	
	affecting immobilized enzymes, kinetics of immobilized enzymes,	
	internal and external mass transfer effects in immobilized-enzyme	
	reactors, intra-particle diffusion, micro-environmental effects on	
	enzyme kinetics, enzyme deactivation, operational stability and	
	optimization, general design considerations for the immobilization	
	process.	
UNIT IV	Design and Analysis of enzyme reactors	8
	Types of Reactors (Modes of operation), Basic design of enzyme	
	reactors under Ideal conditions (Batch and continuous mixed reactors,	
	continuous packed bed reactor under plug flow regime), Effect of	
	Diffusional restrictions on Enzyme reactor design and performance in	
	heterogeneous systems. Parameters affecting the performance of	
	enzyme reactors.	
UNIT V	Case study of Enzymatic Processes	8
	Enzyme reactions in organic media; Study cases of Enzymatic	
	Processes: (any one enzyme/biocatalyst like Proteases, Acylases,	
	Lipases, Oxidoreductases, Aldolases, Amylases etc. to mention a few	
	(Recommended topics to be covered-Applications of the biocatalyst,	

				mechanism,					
improvement of the biocataly	improvement of the biocatalysis reaction).								

- 1. Lee JM, "Biochemical Engineering", Prentice Hall.
- 2. Lehninger A, "Principles of Biochemistry".
- 3. Vieth WR, "Design and Analysis of immobilized Enzyme Flow Reactors".
- 4. Stryer L, "Biochemistry".
- 5. Voet, Voet, "Biochemistry".
- 6. Shuler, "Bioprocess Engineering".
- 7. Fersht A, "Enzyme Structure and Mechanism".
- 8. Sigman DS, Sigman PS, "The Enzymes: Mechanisms of Catalysis".
- 9. Palmer T, "Enzymes".
- 10. Dixon, Webb, "Enzymes".
- 11. Andres Illanes, "Enzyme Biocatalysis: Principles and applications"
- 12. Vladimir Leskovac, "Comprehensive Enzyme Kinetics"

FERMENTATION TECHNOLOGY & GENETIC ENGINEERING LAB BE-511

LTPC

0 0 6 3

Objective: The lab is designed to train the students in basic and some advanced techniques of fermentation and Genetic Engineering.

- 1. Immobilization (calcium alginate/ polyacrylamide/glutaraldehyde) of whole cells and enzymes.
- 2. Organic acid/ alcohol/ enzyme production through fermentation, estimation of product, its separation and its purification
- 3. Design and scale-up of fermentation parameters
- 4. Isolation of plasmid/ phage and plant/ animal (genomic) DNA.
- 5. Agarose gel electrophoresis, visualization of DNA on gels and analysis of isolated DNA.
- 6. Amplification of DNA (using PCR) and restriction digestion.
- 7. RAPD to study biodiversity.
- 8. Competent cell preparation, transformation, ligation and screening of transformants.
- 9. Quantitative estimation, absorption spectra and Tm determination of DNA.
- 10. Blotting Techniques: Southern/ Northern/ Western Blot Techniques.

NANOBIOTECHNOLOGY

BE-512

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: Use knowledge of nano science and mathematics to follow protocols, conduct science or engineering procedures, fabricate products, make conclusions about results, troubleshoot, discover and independently seek out innovations in the rapidly changing field of nanotechnology. Compile and analyze data and draw conclusions at the nano level.

UNIT I	Nanoscales	8			
	What is meant by Nanoscale - Nanoscale Processes - Physical and				
	Chemical Properties of Materials in the Nanoscales - Nanoscale				
	Measurements.				
UNIT II	Properties and measurements of nanomaterials	8			
	Optical Properties – Absorption and Fluroscence – Microscopy				
	measurements - SEM -TEM - AFM and STM. Confocal and TIRF				
	Imaging				
UNIT III	Nanobiology				
	Properties of DNA and motor proteins – Measurements of Conductivity				
	of DNA nanowires and angular properties of motor Lessons from				
	Nature on making nanodevices				
UNIT IV	Bioconjugation of nanomaterials to biological molecules	8			
	Reactive Groups on biomolecules (DNA & Proteins) - Conjugation to				
	nanoparticles (ZnS- Fe3O4) - Uses of Bioconjugated Nanoparticles.				
	NANO DRUG DELIVERY: Various Drug Delivery Systems – aerosol -				
	Inhalants - Injectibles - Properties of Nanocarriers - Efficiency of the				
	Systems.				

- 1. Nanobiotechnology: Concepts, Applications and Perspectives, Christof M. Niemeyer (Editor), Chad A. Mirkin (Editor), Wiley-VCH; 1 edition, 2004.
- 2. Nanobiotechnology: BioInspired Devices and Materials of the Future by Oded Shoseyov and Ilan Levy, Humana Press; 1 edition 2007.
- 3. Nanobiotechnology Protocols (Methods in Molecular Biology) by Sandra J Rosenthal and David W. Wright , Humana Press; 1 edition , 2005.

PLANT CELL TECHNOLOGY BE-513

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The objective of the course is to make students aware of the basic concepts of plant tissue culture. It deals with the initiation and maintenance of different types of cultures and genetic engineering techniques. The concepts of molecular markers and their applications are also being taught.

UNIT I	Introduction to Plant tissue culture	8
	Totipotency; Regeneration of plants; Different types of culture media;	
	Nutritional components of culture media; Regulation of cell	
	differentiation; Types of culture: callus, suspension, organogenesis,	
	somatic embryogenesis, micropropagation.	
UNIT II	Types of plant cell cultures	8
	Isolation, purification and culture of protoplasts; Protoplast fusion and	
	somatic hybridization; Selection systems for somatic hybrids / cybrids;	
	Production of haploid plants: anther, pollen culture and ovule culture;	
	Induction of mutation; Somaclonal variation; Production of disease free	
	plants (meristem culture).	
UNIT III	In vitro Production of secondary metabolites	8
	Production of secondary metabolites by plant cell cultures; batch and	
	continuous cultures. Biotransformation using plant cell cultures;	
	Bioreactor system and models for mass cultivation of plant cells, hairy	
	root culture.	
UNIT IV	Genetic transformation in plants and molecular markers	8
	Genetic transformation methods for production of transgenic plants:	
	Microprojectile bombardment, microinjection and electroporation.	
	Detailed mechanism of Agrobacterium mediated genetic transformation;	
	Applications of transgenic plants; Reporter genes; Selectable markers.	
	Genetic engineering-Safety, social, moral and ethical considerations.	
	Molecular Markers: RFLP, RAPD, AFLP, microsatellites, SCAR	
	(sequence characterized amplified regions) and SSCP (single strand	
	conformational polymorphism).Molecular Markers: RFLP maps, RAPD	
	maps, STS, microsatellites, SCAR (sequence characterized amplified	
	regions), SSCP (single strand conformational polymorphism), AFLP,	
	ESTs, QTL, map based cloning, molecular marker assisted selection.	

- 1. Chawla HS, "Plant Biotechnology: A Practical Approach".
- 2. Slater A, Scott NW, Fowler MR "Plant Biotechnology: The Genetic Manipulation of Plants".
- 3. Dixon RA, Gonzales RA, "Plant Cell Culture: A Practical Approach".
- 4. Mantell SH, Matthews JA, McKee RA, "Principles of Plant Biotechnology: An Introduction to Genetic Engineering in Plants".
- 5. Stafford A, Warren G, "Plant Cell and Tissue Culture (Biotechnology Series)".
- 6. Brown TA, "Gene cloning: An Introduction".
- 7. Old, Primrose, "Principles of Gene Manipulation".
- 8. Bhojwani SS, Razdan, "Plant Tissue Culture".

PHARMACEUTICAL BIOTECHNOLOGY BE-514

Pre-requisite	Co-requisite	L	Т	Р	С
-	-	2	1	0	3

Objective: To equip students with the know-how of various pharmaceutical products and processes, and also with the applications of biotechnology in the pharmaceutical sector.

UNIT I	Introduction	8
	Pharmaceutical industry & development of drugs; types of therapeutic	
	agents and their uses; economics and regulatory aspects.	
UNIT II	Drug Action, Metabolism and Pharmacokinetics	8
	Mechanism of drug action; physico-chemical principles of drug	
	metabolism; radioactivity; pharmacokinetics.	
UNIT III	Chemotherapeutics	8
	Chemotherapy for bacterial, fungal, viral infections, drugs acting on	
	protozoal infection, malarial infection and helminth parasites. Cancer	
	chemotherapy, Drug interactions.	
UNIT IV	Principles of Drug Manufacture; Biopharmaceuticals	8
	Compressed tablets; dry and wet granulation; slugging or direct	
	compression; tablet presses; coating of tablets; capsule preparation; oral	
	liquids - vegetable drugs - topical applications; preservation of drugs;	
	analytical methods and other tests used in drug manufacture; packaging	
	techniques; quality management; GMP. Biopharmaceuticals: Various	
	categories of therapeutics like vitamins, laxatives, analgesics,	
	contraceptives, hormones	

References Books :

- 1. Gareth Thomas. Medicinal Chemistry. An introduction. John Wiley. 2000.
- 2. Katzung B.G. Basic and Clinical Pharmacology, Prentice Hall of Intl. 1995

BIOREACTOR ENGINEERING BE-515

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The objective of the course is to develop the concepts of ideal and non-ideal bioreactor design, residence time distribution in ideal and non-ideal bioreactors.

UNIT I	Introduction to reactor design	8						
	Introduction; General design information; Design considerations for maintaining sterility of process streams and process equipments; piping and instrumentation; materials of construction for bioprocess plants. Flow injection analysis for measurement of substrates, product and other metabolites.							
UNIT II	Analysis of Reactors	8						
	Bioreactors for submerged liquid fermentation of microbial cells in: batch reactors - Calculation of batch time, Non-ideality; in semi- continuous reactors; in continuous reactors – PFTR, CSTR; and Combination of reactors.							
UNIT III	Design of unconventional Bioreactors							
	Design and analysis of Packed Bed Bioreactor, Airlift Bioreactor, Hollow Fiber Bioreactor, Plant Cell Bioreactor, Mammalian Cell Bioreactor and bioreactors for solid state fermentation.							
UNIT IV	Introduction to Residence Time Distribution	8						
	Residence Time Theory; Residence Time Models: Ideal Reactors and Reactor Combinations, Hydrodynamic Models; Drawbacks of Classical RTD measurements; Transient behavior in bioreactor. Capital Cost Estimating: Components Of Capital Cost, Working Capital; Estimating Purchased Equipment Costs; Estimating Installed Costs.							

- 1. Panda, Tapobrata. Bioreactors: Analysis and Design. Tata McGraw Hill, 2011.
- 2. Moser, Anton, Bioprocess Technology: Kinetics and Reactors. Springer Verlag, 1988.
- 3. Bailey J.E. & Ollis, D.F. Biochemical Engineering Fundamentals, 2nd ed., McGraw Hill, 1986

- 4. Lee, James M. Biochemical Engineering, PHI, USA.
- 5. Atkinson, Handbook of Bioreactors, Blanch, H.W. Clark, D.S. Biochemical Engineering, Marcel Decker, 1999.
- 6. Max S. Peters and Klaus, D. Timmerhaus, Plant Design and Economics for Chemical Engineers, 4th Edition, McGraw Hill Book Co., 1991.
- 7. M. V. Joshi and V.V. Mahajani, Process Equipment Design, 3rd Edition, Macmillan India Ltd., 2000.
- 8. Michael R. Ladisch, Bioseparations Engineering: Principles, Practice and Economics.

APPLIED MICROBIOLOGY AND BIOTECHNOLOGY BE-516

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	0

Objective: The course helps in recollecting some basic but very important concepts in microbiology and biotechnology with advanced knowledge of various recent developments at industrial level in microbiology and biotechnology.

UNIT I	Types of microorganisms	8				
	Structure and genetic system of viruses and bacteria, Actinomycetes, fungi,					
	Cyanobacteria and algae, Criteria used in the classification of					
	microorganisms: morphology, cytology, genetics, host specialization,					
	serology.					
UNIT II	Modern trends in microbial production	8				
	Modern trends in microbial production of bioplastics (PHB, PHA),					
	bioinsectices (thuricide), biopolymer (dextran, alginate, Xanthan, pullulan),					
	Biofertilizers (Nitrogen fixer/Phosphate Solubilizers/siderophore producers),					
	Single Cell Protein, micro algae as - food - feed and colourant. Potential					
	Application of Spirulina arthrospira as a nutritional and therapeutic					
	supplement in health management.					
UNIT III	Pharmaceutical Microbiology	8				
	Antibiotics and synthetic antimicrobial agents, Mechanism of action of					
	antibiotics (inhibitors of cell wall synthesis, nucleic acid and protein					
	synthesis). Bacterial resistance to antibiotics. Microbial contamination and					
	spoilage of pharmaceutical products, Good Manufacturing Practices (GMP)					
	and Good Laboratory Practices (GLP) in pharmaceutical industry.					
UNIT IV	Industrial microbes and their products	8				
	A brief idea about the products obtained from microbes, biology of industrial					
	microorganisms such as Streptomyces, yeasts, Spirulina and Penicillium,					
	Basic principle of fermentation technology, Overview of fermenter design,					
	factors governing the chemical and biological aspects in a bioreactor,					
	commercial production of penicillin, ethanol, vinegar, vitamin B12,					
	Protease, citric acid and glutamic acid from microbial sources-production of					
	commercially useful non-microbial products produced through recombinant					
	microbes.					

Books recommended

- 1. Prescott, Harley and Klevin; Microbiology; 2 nded.
- 2. Microbiology, Peleczar, TMH Publication
- 3. Pirt SJ, "Principles of Microbe and Cell Cultivation
- 4. Murray Moo-Young, Comprehensive Biotechnology, Vol. 1& III.
- 5. Microbes & Fermentation, A. Lel and Kotlers Richard J. Mickey, Oriffin publication
- 6. Industrial Fermentations, Leland, N.Y. Chemical publishers.
- Prescott and Dunn's- Industrial Microbiology, 4th, ed. Biotechnology series, Rrhym, Reed & Weinheim, Verlag-chemie.

INTEGRAL UNIVERSITY, LUCKNOW

SYLLABUS

&

EVALUATION SCHEME

for

M.TECH. BIOTECHNOLOGY 2nd Year (with effect from 2021-2022)

Integral University M. Tech. Biotechnology (with effect from Session 2020-2021) (Students admitted 2020 onwards)

2nd Year

3rd Semester

S.	Course	ourse Subject		Periods and					ation S		Subject	
No.	Category	Code	Subject		C	redits		Sessio	onal (C	<u>A)</u>	ESE	Total
110.	Category	Cout		L	Т	Р	С	СТ	TA	Total	LOL	10141
1	DC	BE-601	Bioinformatics,	2	1	0	3	40	20	60	40	100
			Genomics and									
			Proteomics									
2	DC	BE-602	Immunotechnology	2	1	0	3	40	20	60	40	100
3	DE		Departmental Elective	2	1	0	3	40	20	60	40	100
4	DC	BE-699	M.Tech. Dissertation	0	0	8	4	40	20	60	40	100
5	DC	BE-603	Colloquium	0	0	4	2	40	20	60	40	100
6	DC	*BE-604	Advances in	2	1	0	0	40^{*}	20^*	60^{*}	40^{*}	100^{*}
			Molecular Techniques									
			Total	8	4	12	15	200	100	300	200	500
	* A zero-ci	edit found	ation course. Candidate has	s to	pass	the co	ourse	by secu	uring a	t least 5	0% mai	ks.

Departmental Electives

- 1. Animal Cell Engineering (BE-605)
- 2. Biochemical Reaction Engineering (BE-606)
- 3. Environmental Biotechnology (BE-607)
- 4. Secondary Metabolism in Plants (BE-608)
- 5. Plant Developmental Biology (BE-609)
- 6. Biosensors: Design and Applications (BE-610)
- 7. IPR, Biosafety and Bioethics (BE-611)
- 8. Medical Biotechnology (BE-612)

BIOINFORMATICS, GENOMICS AND PROTEOMICS BE-601

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The objective of the course is learning and understanding the detailed developments and applications of the field of Bioinformatics in varied area of biological research. The course generally focuses on genomics, proteomics and computational biology studies and their relevance on research platform.

UNIT I	Bioinformatics & Sequence Analysis	8
	Nucleic acid sequence data banks, GenBank; EMBL; Brief overview of	
	Human Genome Project (HGP): goals and applications. Pair wise sequence	
	alignment: Needleman and Wunsch; Smith Waterman algorithms; Database	
	Similarity Searches: Basic Local Alignment Search Tool (BLAST) &	
	FASTA methods.	
UNIT II	Applied Bioinformatics	8
	Drug Designing, Stages of Drug Designing, DNA microarrays and its	
	applications, Determination of Secondary & Tertiary structure of proteins:	
	Chou Fasman method, Homology Modeling and its applications; Gene	
	prediction studies: Promoter and regulatory regions scanning.	
UNIT III	Structural & Functional Genomics	8
	Multiple sequence alignments: Strategies and applications in Phylogenetics.	
	Structural genomics (SG): Basic principles and applications, approaches for	
	target selection. Functional genomics: application of sequence based and	
	structure-based approaches to assignment of gene functions e.g. sequence	
	comparison, structure analysis (especially active sites, binding sites) and	
	comparison, pattern identification.	
UNIT IV	Proteomics: Tools and Databases	8
	Proteomics: an introduction; Study of transcriptome and proteome; Protein-	
	protein interactions: databases such as DIP, PPI server and tools for analysis	
	of protein protein interactions. Protein arrays: basic principles;	
	bioinformatics-based tools for analysis of proteomics data, Tools available at	
	ExPASy Proteomics server; Introduction to Protein Sequence Data Banks:	
	UniProt, SwissProt.	

References Books:

- 1. Baxevanis AD, Ouelettte BFF; Bioinformatics: A practical Guide to the analysis of genes and proteins., Wiley 2004, ISBN: 978-0-471-47878-2
- 2. Stephen A., David K, Womble D; Introduction to Bioinformatics: A Theoretical and Practical Approach., 2003, Humana Press, ISBN-13: 978-1588292414
- 3. Harren Jhoti, Andrew R. Leach; Structure- based Drug Discovery, Springer, 2007, ISBN 1402044070
- 4. Andrew Leach; Molecular Modelling: Principles and Applications (2nd Edition), Prentice Hall, 2001, ISBN 13: 9780582382107
- 5. Cynthia Gibas, Per Jambeck; Developing Bioinformatics Computer Skills: An Introduction to Software Tools for Biological Applications, 2001, O'Reilly Media publishers.
- 6. Barry A. Bunin, Brian Siesel, Guillermo Morales, Jurgen Bajorath; Chemoinformatics: Theory, Practice, & Products, Springer Science & Business Media, 2006.

Research Publications:

- 1. Zhang W, Pei J, Lai L. Computational Multitarget Drug Design, J ChemInf Model, 2017. doi: 10.1021/acs.jcim.6b00491
- Leelananda SP, Lindert S. Beilstein. Computational methods in drug discovery, J Org Chem,. 2016 Volume 12. Pg- 2694-2718.

Websites:

- 1. Error! Hyperlink reference not valid.simulation software: www.schrodinger.com
- 2. National Center for Biotechnology Information, www.ncbi.nlm.nih.gov/.
- 3. Auto Dock, autodock.scripps.edu

Online document/video/audio:

- 1. Computational chemistry in drug discovery. European Bioinformatics Institute EMBL-EBIhttps://www.youtube.com/watch?v=9DESulCWbRQ.
- 2. Webinar recording: a sequel for beginners: ligand-based drug design the basics https://www.youtube.com/watch?v=ef5EaooBYUU.

IMMUNOTECHNOLOGY BE 602

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The objective of the course is to apprise the students about components associated with immune system and molecular mechanism of their working. The course also deals with implications of deregulation of basic regulatory networks that lead to immune system related disorders.

UNIT I	Humoral and Cell Mediated Immunity	8
	B-cell and T cell activation, Structure and function of MHC molecules.	
	Exogenous and endogenous pathways of antigen processing and	
	presentation. Antibodies and antibody based therapy: Production of	
	Polyclonal antibodies with different types of antigens : antigen	
	preparation and modification, adjuvant, dose and route of antigen	
	administration, collection of sera, purification of antibodies; Inhibitors	
	of tumor necrosis factor, targeting the IL2 receptor with antibodies or	
	chimeric toxins, monoclonal antibodies to CD3.	
UNIT II	Hybridoma Techniques and Monoclonal Antibody Production	8
	Myeloma cell lines - fusion of myeloma cells with antibody producing	
	B-cells-fusion methods - selection and screening methods for positive	
	hybrids - cloning methods - production, purification and	
	characterization of monoclonal antibodies. Application of monoclonal	
	antibodies in biomedical research, in clinical diagnosis and treatment;	
	Production of human monoclonal antibodies and their applications.	
UNIT III	Immunotherapy for Allergic Diseases	8
	Specific and nonspecific immunotherapy for Asthma and allergic	
	diseases, Drug therapy in HIV: AIDS and other Immunodeficiencies;	
	Vaccine and peptide therapy, newer methods of vaccine preparation,	
	sub-unit vaccines, immuno-diagnosis of infectious diseases, serological	
	techniques-ELISA, RIA and Immunoblotting.	
UNIT IV	Transplantation	8
	Graft rejection, evidence and mechanisms of graft rejection, prevention	
	of graft rejection, immunosuppressive drugs, HLA and disease,	
	Xenotransplantation. Drugs: Antimetabolites, corticosteroids, anti-	
	inflammatory agents; Cytokines: Cytokines regulating immune	
	inflammation: interleukin-4, interleukin-20, interleukin-12; The	
	interferons: Basic biology and therapeutic potential.	

References Books:

- "Cellular & Molecular Immunology" by Abbas AK, Lichtman AH, Abbas AK, Pober JS, Publisher: Elsevier; Year: 2012; Edition: 7th
- ^{1.} "Immunology" by Kuby; Publisher: WH Freeman and Company, New York; Year: 2007; Edition: 6th.
- "Elements of Immunology" by Fahim Halim Khan; Publisher: Pearson; Year: 2009; Edition: 1st
- 3. "Immunology" by Roitt, Publisher: Edinburg Mosby; Year: 2002; Edition: 6th.

ADVANCES IN MOLECULAR TECHNIQUES BE-604

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	0

Objective: To demonstrate proficiency in advanced molecular biology techniques and to inculcate an understanding of advanced molecular techniques, including advanced background information and theory, applications, limitations, advantages and disadvantages, common problems and troubleshooting.

UNIT I	PCR-based Techniques	8
	Principle and applications of PCR; RACE; DD-RTPCR; Degenerate PCR, TA	
	cloning, Realtime PCR, Scorpion probes, Site directed mutagenesis, PCR-	
	based mutagenesis, Error-prone PCR	
UNIT II	Gene Silencing	8
	Antisense RNA technique, Sense co-supression in plants and animals, RNAi,	
	Gene silencing, Ribozymes	
	Sequencing Techniques	8
UNIT III	Sequencing Techniques Rapid DNA and RNA sequencing techniques Sanger method Maxam and	8
UNIT III	Sequencing Techniques Rapid DNA and RNA sequencing techniques, Sanger method, Maxam and Gilbert procedure, Automated DNA sequencing, Pyrosequencing, Genomics:	8
UNIT III	Rapid DNA and RNA sequencing techniques, Sanger method, Maxam and	8
UNIT III UNIT IV	Rapid DNA and RNA sequencing techniques, Sanger method, Maxam and Gilbert procedure, Automated DNA sequencing, Pyrosequencing, Genomics:	8
	Rapid DNA and RNA sequencing techniques, Sanger method, Maxam and Gilbert procedure, Automated DNA sequencing, Pyrosequencing, Genomics: High throughput, Shot gun, Clone contig, Microarray, Protein microarray	
	Rapid DNA and RNA sequencing techniques, Sanger method, Maxam and Gilbert procedure, Automated DNA sequencing, Pyrosequencing, Genomics: High throughput, Shot gun, Clone contig, Microarray, Protein microarrayMolecular Markers and other Molecular Techniques	

References Books:

- 1. Molecular Cloning; Sambrook and Russel, Cold Spring Harbor Laboratory
- 2. Gene Cloning and DNA Analysis: An Introduction, T.A. Brown; Blackwell Publications
- 3. Principles of Gene manipulation and genomics; Primrose and Twyman; Wiley Publishing

ANIMAL CELL ENGINEERING BE 605

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The course will help students to understand mechanisms of gene manipulation of animal cells, stem cell therapeutics and other frontier areas associated with molecular medicine.

UNIT I	Animal Cell Culture	
	Animal Biotechnology and its scope, Principles of sterile techniques and cell propagation, Cell culture media: Physicochemical Properties, Chemically defined and Serum free media. Culture Environment, Cell Adhesion. Types of culture system: monolayer culture, Roller bottle, Suspension culture, static suspension culture, agar culture, agitated micro carrier suspension culture, hollow fiber systems, Scaling up factors. Strategies of medium optimization, Organotypic cultures, Animal Tissue Engineering, Bioartificial Organs, Scaffolds and Biomaterials used in Tissue Engineering.	8
UNIT II	Primary Culture	
	Isolation of Tissue, isolation of cells from explants by enzymatic disaggregation, mechanical disaggregation, EDTA treatment. Steps involved in primary cell culture, Cell line characterization: Morphology, Chromosome Analysis, Antigenic Markers, Transformation, Immortalization, Cell counting, Rates of Synthesis, Generation Time. Measurement of cell growth and viability, cell synchronization, cell transformation, maintenance of cell culture through sub-culturing and cloning, cryo-preservation, application of cell cultures. Types of microbial contamination and Eradication of Contamination	8
UNIT III	Mammalian Cell Lines	
	Mammalian cell expression system, gene transfer techniques in Mammalian cells, Stem cell culture: principles for identification, purifications, assessment of proliferation heterogeneity, long-term maintenance and characterization, Embryonic and adult stem cells and their applications. Genetically modified stem cells in gene therapy, Markers for stem cell identification, characterization of differentiated cell types, Applications of stem cells.	8
UNIT IV	Transgenic Animals Animal virus vectors; Shuttle vectors. Cloning in mammalian cells, Integration of DNA into mammalian genome, Methods of transformation: (Microinjection, Electroporation, Microprojectile bombardment, Liposomal packaging),Animal as bioreactors, problems after developing transgenic animals. Applications of transgenic animals, In vitro-fertilization, Gene	8

Therapy: *Ex-vivo* gene therapy, *In vivo* gene therapy, Prodrug activation therapy, Nucleic acid therapeutic agents. Protein production by genetically engineered mammalian cell lines, Manipulation of Growth hormone: somatotropic hormone, Thyroid horomone; Probiotics as growth promoters, Ideal characteristics probiotics, uses of probiotics.

References Books:

- 1. "Gene Cloning and DNA Analysis" by TA Brown, Publisher: Oxford Balckwell Science, Year: 2008, 2011, Edition: 4th, 5th.
- 2. Old & Primrose "Principles of Gene Manipulation", Publisher: Balckwell; Year: 2014, Edition: 7th
- 3. "Methods of Tissue Engineering" Anthony Atala, Robert P. Lanza; Publisher: Elsevier; Year: 2005,
- 4. "Animal Cell Biotechnology: Methods and Protocols" by Nigel Jenkins; Publisher: New Jersey: Humana Press; Year: 2005.

BIOCHEMICAL REACTION ENGINEERING BE-606

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The course will help students to understand mechanisms of gene manipulation of animal cells, stem cell therapeutics and other frontier areas associated with molecular medicine.

UNIT I	Reaction Basics Rate of reaction, reaction order and rate laws, Rate-limiting step. Chain reactions. Pyrolysis reactions. Steady state ideal reactors: completely mixed and plug flow.	8
UNIT II	Reactors Reactor size comparisons for PFR and CSTR. Reactors in series and in parallel. How choice of reactor affects selectivity vs. conversion. Theory of the continuous and semi-continuous fermentor operation.	8
UNIT III	Reactor Engineering I Non-ideal reactor mixing patterns, Residence time distribution, Tanks in series model. Combinations of ideal reactors. Non isothermal reactors. Equilibrium limitations, stability. Derivation of energy balances for ideal reactors; equilibrium conversion, adiabatic and nonadiabatic reactor operation.	8
UNIT IV	Reactor Engineering II Oxygen transfer in fermentors. Applications of gas-liquid transport with reaction. Reaction and diffusion in porous catalysts. Combined internal and external transport resistances.	8

References Books:

- 1. Fogler H.S. Elements of chemical reaction Engineering. 4th edition, Prentice- Hall of India Pvt Ltd, 2006.
- 2. Levenspiel O., Chemical Reaction Engineering. 3rd edition, Wiley New York. 1992.
- 3. Rao D.G., Introduction to Biochemical Engineering, McGraw-Hill, 2005.
- 4. Villadsen, J., Nielsen, J., & Lidén, G. Bioreaction engineering principles. 3rd edition Springer. 2011
- 5. Smith J.M., Chemical Engineering Kinetics. 3rd edition. New York, McGraw-Hill, 1981.
- 6. Steinfeld, J. I., Francisco J. S., & Hase W. L. Chemical Kinetics and Dynamics. 2nd ed. Upper Saddle River, NJ: Prentice Hall, 1999.
- 7. Holland, C. D., & Anthony, R. G. Fundamentals of Chemical Reaction Engineering, John Wiley and Sons, 1990.

ENVIRONMENTAL BIOTECHNOLOGY BE-607

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The main objective of this course is to impart students an understanding of pollution of environment by air, water and soil responsible for degradation of natural resources and degradation of biodiversity. It also familiarizes them with various remediation techniques, non polluting technologies viz. bioenergy and biomining.

UNIT I	Title of the Unit Introduction to Ecosystem & Environmental PollutionSource of air, water and solid wastes, Ecosystem, Ecosystem Management,Renewable resources, Role of biotechnology in environmental protection,.Air, water and soil pollution: cause and control measures. Treatmenttechnologies, Biofilters and Bioscrubbers for treatment of industrial waste.	8
UNIT II	Bioreactors & Rural BiotechnologyBiocompositing,Biofertilizers;Vermiculture;Organicfarming;Biomineralization;Biofuels;BioethanolandBiohydrogen;Energymanagement and safety.	8
UNIT III	Water Quality Modeling For StreamsCharacterization of effluents, effluent standards, Waste water collection; control and management; waste water treatment, sewage treatment through chemical, microbial and biotech techniques, Treatment of waste water from dairy, tannery, sugar and antibiotic industries. Waste recovery system. Primary methods; setting, pH control, chemical treatment. Secondary methods; Biological treatment, Tertiary treatments; like ozonization,	8
UNIT IV	Environmental Regulations and Technology Regulatory Concerns, Technology; Laws, regulations and permits, Air, Water, Solid Waste, Environmental Auditing, National Environmental Policy act, Occupational Safety and Health Act (OSHA), Storm Water Regulations; Technology (waste water); Recycling of Industrial wastes: paper, plastics, leather and chemicals.	8

References Books:

- 1. E.P. Odum "Fundamentals of Ecology" V.B. Saunders and Co. 1974.
- 2. W.J. Weber "Physics-Chemical Process for water quality control, Wiley-international Ed.
- 3. L.L. Gaccio water and water population Handbook Marcel Dekkar, New York.
- 4. Pradipta Kumar Mohapatra "Textbook of Evironmental Biotechnology" I.K. International Publishing House Pvt. Ltd., New Delhi.
- 5. Allan Scagg "Environmental Biotechnology" Oxford University Press, Canada. 2004.
- 6. Environmental Biotechnology by Prof. Jogdand, Himalayan publishing House, 2010.

SECONDARY METABOLISM IN PLANTS AND MICROBES BE-608

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The main objective of this course is to impart students an understanding of biologically active compounds accumulated in plants especially as secondary metabolites that have been used as a source of major, essential oils, anti-oxidants and phytopharmaceutical ranging from anti-cancer activity to HIV. There has been an exclusive demand for herbal plants and extracts which can be used to improve human health and well being.

UNIT I	Types of Secondary Metabolites and their Synthesis	
	Introduction to primary & secondary metabolism: structure, biosynthesis and	
	metabolism of important secondary products; Glycosides, isoprenoids,	8
	cardenolides, alkaloids, phenylpropanoids and antibiotics.	
UNIT II	Enzymes involved in Secondary Metabolism	
	Important groups of secondary metabolic enzymes; Significance of secondary	
	metabolism and products for the producer organism.	8
UNIT III	Regulation of Secondary Metabolism	
	Regulation and expression of secondary metabolism; regulation of enzyme	
	activity; regulation of enzyme amount; integration with differentiation and	
	development; action of inducers; coordinated enzyme expression and	8
	sequential gene expression.	0
UNIT IV	Culture Systems and Biotransformation	
	Metabolic products produced by in vitro culturing of plant cells, selection of	
	plant cells/tissues for the production of a specific product, Culture system in	8
	secondary plant product biosynthesis-batch continuous cultures and	
	immobilized plant cells, Biotransformation of precursors by cell culturing.	
	Metabolic pathway engineering for production of secondary metabolites.	

- 1. Slater A, Scott NW, Fowler MR "Plant Biotechnology: The Genetic Manipulation of Plants".
- 2. Mantell SH, Matthews JA, McKee RA, "Principles of Plant Biotechnology: An
- 3. Introduction to Genetic Engineering in Plants".
- 4. Brown TA, "Gene cloning: An Introduction".
- 5. Old, Primrose, "Principles of Gene Manipulation".
- 6. Buchanan, "Plant Biochemistry & Molecular Biology".

PLANT DEVELOPMENTAL BIOLOGY BE-609

Pre-requisite	Co-requisite	L	Т	Р	С
BE-513		2	1	0	3

Objective: To make the students aware of the plant differentiation and development. The students will also knowledge about the plant aging and senescence.

UNIT I	Basics of Differentiation	6
	Concept of totipotency and differentiation, Mechanisms of	
	differentiation: cellular differentiation, induction, asymmetric division,	
	morphogens.	
UNIT II	Seed and Embryo Development	8
	Seed Germination, Hormonal control of seed germination, Embryo	
	development, Signalling and cell development, Plant cell division,	
	Meristem development and patterning.	
UNIT III	Organ Development in Plants	8
	Root development, shoot development, Flower development, Stomata	
	development and patterning, Homeotic genes and its role in	
	development, Developmental plasticity.	
UNIT IV	Aging and Regulation of Development	8
	Aging & Senescence, Environmental regulation and development, the	
	problem with Rubisco and photorespiration: the physiological,	
	ecological and evolutionary aspects of photosynthesis in C4 plants.	
	I I	

References:

- 1. Raghavan, V. Developmental Biology of Flowering Plants, Springer publications, 2000.
- 2. Claudia Köhler and Lars Hennig. Plant Developmental Biology: Methods and Protocols, Springer publications, 2010.
- 3. Cutler, Sean, Bonetta, Dario (Eds.). Plant Hormones Methods and Protocols, Springer publications, 2009.
- 4. L. D. Noodén, Aldo Carl Leopold, Senescence and aging in plants, Academic Press, 1988.

BIOSENSORS: DESIGN AND APPLICATIONS BE-610

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The course will give an overview of biosensors, their fabrication and other details.

UNIT I	Biosensors : An overview	8
	Overview of biosensors and bio-electronic devices, History, concepts and	
	applications. Fundamental elements of biosensor devices and design	
	considerations, calibration, dynamic range, signal to noise, sensitivity.	
	Fundamentals of surfaces and interfaces, modifications of sensor surface.	
	Bio-electrochemistry, Electrochemistry for biosensors, Principles of	
	potentiometry and potentiometric biosensors; amperometry and	
	amperometric biosensors; Conductimetric and Impedimetric Biosensors.	
UNIT II	Molecular Recognition Elements	8
	Molecular recognition elements: Enzymes, Antibodies and DNA. Kinetics	
	and thermodynamics of bio-recognition reactions. Enzyme sensors and	
	affinity sensors: immune sensors, oligo-nucleotides sensors, SPR, FRET,	
	Membrane protein sensors: ion channels, receptors, whole cell sensors -	
	bacteria, yeast, mammalian cells, non-biological and bio-mimicry:	
	molecularly imprinted polymers, non-biological organic molecules.	
UNIT III	Basic Fabrication of Biosensors	8
	Immobilization: adsorption, encapsulation - (hydro-gel, sol-gel glass, etc.),	
	covalent attachment, diffusion issues. Optical Biosensor, Microlithography	
	for biosensors, FETS and Bio-FETS, MEMS and Bio-MEMS. Lab-on-a-chip:	
	TAS and m-TAS devices, Sensors based on Fiber Optic. Electro-	
	chemiluminescence, pH sensors, artificial receptors.	
UNIT IV	Application	8
	Physical sensors: piezoelectric, resistive, bridge, displacement measurement,	
	blood pressure measurement, quartz crystal microbalance. Applications of	
	biosensors in Agriculture, food safety, food processing, Biomedical: Point-	
	Of-Care system, Noninvasive Biosensors in Clinical Analysis. Biosensor-	
	based instruments; Blood chemistry sensors, sensors for Genetic testing.	
	Applications of biosensors in Bio-security, environmental.	

References Books:

- 1. Handbook of Chemical and Biological Sensors", Richard F Taylor; IOP Publishing Ltd; Edition Year: 1996
- 2. "Handbook of Biosensors and Biosensor Kinetics"; Ajit Sadana & Neeti Sadana, Elsevier; Edition Year: 2011
- 3. "Biosensors"; Jonathan M. Cooper; Oxford University Press; Edition Year: 2003

Websites:

- 1. http://www.sciencedirect.com/science/journal/09565663
- 2. http://www.nature.com/subjects/biosensors
- 3. http://www1.lsbu.ac.uk/water/enztech/biosensors.html

IPR, BIOSAFETY AND BIOETHICS BE-611

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The knowledge of IPR, Bio-safety and Bioethics recognizes the need for the possibility to exchange views and ideas of the students in the form of patent in the field of science and technology development. The basic knowledge of this subject paper is very useful and for student in term of how they save and protect their invention or intellectual property in proper ways.

UNIT I	History Of IPR	8
	Jurisprudential definitions and concepts of property, rights, duties and their correlation; History and evolution of IPR like patent, design and copyright. Significance of IPR; Requirement of a patentable novelty; Issues related to IPR protection of software and database; IPR protection of life forms; International convention in IPR; Geographical indication; Distinction among various forms of IPR; Rights / protection, infringement or violation, remedies against infringement: civil and criminal.	
UNIT II	Patent Process	8
	Obtaining patent; Invention step and prior art and state of art procedure; Detailed information on patenting biological products and biodiversity; Appropriate case studies; Indian Patent Act 1970 (amendment 2000); Major changes in Indian patent system as post TRIPS effects; Budapest treaty	
UNIT III	Biosafety Levels	8
	Biosafety Levels : Safety guidelines for rDNA research and infectious agents ; Containment facilities and its disposal; Radiation hazards; Safety concerns about transgenics: Environmental, Health, Economic. Safety concerns related to Animal Models.	
UNIT IV	Bioethics	8
	Bioethics: Introduction, necessity and limitation; Ethical conflicts in Biotechnology; Different paradigms of bioethics: National and International guidelines; Bioethics of genes; Bioethics in health care: Bioethical dilemmas in medical and surgical treatment; Legal implications in bioethics.	

- 1. Old and Primrose "Principles of Gene Manipulation".
- 2. Keru M "Ethical Biotechnology", Global Vision Publishing House.
- 3. Huxley TH "Evolution and ethics", Princeton University Press.
- 4. Arya R "Bioethics".
- 5. Erbisch FH and Maredia KM "Intellectual Property Rights", Universities Press.
- 6. Glick and Pasternak "Molecular Biotechnology".
- 7. Knight 'Patent strategy for researches and research managers', Wiley Publications

MEDICAL BIOTECHNOLOGY BE 612

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	2	1	0	3

Objective: The course will acquaint the students with pathogenesis and management of different diseases.

UNIT I	Genetic Disorders	8				
	General, systemic and specific syndromes. Classification of genetic diseases.					
	Chromosomal abberations-Numerical disorders e.g. trisomies & monosomies,					
	Structural disorders e.g. deletions, duplications, translocations & inversions,					
	Genetic diseases-Autosomal, X-linked and Y-linked disorders and					
	Mitochondrial disorders.					
UNIT II	Molecular Basis of Human Diseases	8				
	Pathogenic mutations and Dynamic Mutations - Fragile- X syndrome,					
	Myotonic dystrophy. Prevention and treatment of human diseases Avoiding					
	exposure to pathogen Antibiotics and chemotherapeutic agents - drug					
	resistance and antibiotic policy Using body's immune responses Alternative					
	systems - Chinese, European and Indian (Siddha, Ayurveda, Naturopathy,					
	etc.) Gene therapy; Chemotherapy and radiotherapy of tumors; Stem cell					
	therapy.					
UNIT III	Pathogenesis of Different Diseases	8				
	Pathogen, pathogenesis, clinical condition, laboratory diagnosis,					
	epidemiology, chemotherapy and prevention of the following diseases. Viral -					
	influenza, measles, hepatitis, Bacterial - pneumonia, tuberculosis, Typhoid,					
	Fungal-histoplasmosis, Protozoan - Amoebic dysentery. AIDS. Nosocomial					
	infections, Factors that influence hospital infection, hospital pathogens, route					
	of transmission, investigation, prevention and control.					
UNIT IV	Techniques in Laboratory Diagnosis	8				
	Haematology, biochemistry, microbiology, serology, radiology and other					
	special methods. Prenatal diagnosis-Amniocentesis, Chorionic Villi Sampling					
	(CVS), Non-invasive techniques-Ultrasonography, X-ray, Diagnosis using					
	protein and enzyme markers, monoclonal antibodies. Microarray technology-					
	genomic and cDNA arrays, application to diseases. Biosignalanalyzer, CT					
	scan and Magnetic Resonance Imaging assisting the heart and kidney.					

- 1. Mackie and McCartney; Practical Medical Microbiology; Elsevier; Edition: 14th; Year: 2012.
- Pratibha Nallari and V. Venugopal Rao; Medical Biotechnology; Oxford University Press; Edition: 2nd; 2012.
 - a. Name of the authors: Jochen Decker (Editor), Udo Reischl (Editor)
 - b. Molecular Diagnosis of Infectious Diseases (Methods in Molecular Medicin; Humana Press; 2003.

Colloquium

BE-603

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	0	0	4	2

Objective: To acquaint the student with the various techniques used in contemporary research in food technology that will be useful in successful completion of their project work in the fourth semester.

- 1. Searching for scientific literature (Sciencedirect, SCOPUS, Google Scholar etc.)
- 2. Exposure to different manuscript forms (Review, Short note, Research article, Communication).
- 3. Design of experiments in research.
- 4. Basic statistical analysis (ANOVA, RSM, ANN).
- 5. Different manuscript formats and referencing styles (Use of Mendeley, Endnotes.).
- 6. Publishing manuscripts (plagiarism check, cover letters, suggesting reviewers etc).
- 7. Thesis writing and presentation.
- 8. Exposure of students to research in laboratory.
- 9. Ethics in conducting research.

References:

- 1. Sciencedirect:https://www.sciencedirect.com/
- 2. Mendeley:https://www.mendeley.com

- 1. Gupta, S.P., Statistical Methods; S. Chand & Sons, NewDelhi.
- 2. Jerold H.Zar (2009): Bio-statistical Analysis, 4th Edition, Pearson EducationInc.

M.TECH. DISSERTATION BE-699

Pre-requisite	Co-requisite	L	Т	Р	С
None	None	0	0	8	4

Objective: To acquaint the student with the various techniques used in contemporary research in biotechnology that will be useful in successful completion of their project work in the fourth semester.

- 1. Biological Databases (e.g.; sequence databases, structure databases and specialized databases) and their retrieval tools and methods.
- 2. Sequence similarity searching (e.g.; BLAST and FASTA).
- 3. Protein sequence analysis using ExPASy Bioinformatics resource portal and multiple sequence alignment using Clustal W tool.
- 4. 3-D structure prediction of protein through homology modeling and their visualization by PyMol/DS Visualizer/RasMol.
- 5. Media preparation and sterilization for plant and animal tissue culture.
- 6. Induction of callus and suspension culture.
- 7. Multiple shooting and organogenesis from buds.
- 8. Plant regeneration by micropropagation.
- 9. Preparation of media for the given animal cell culture.
- 10. Maintenance of established cell lines.
- 11. Cell counting & viability by vital staining.
- 12. Staining of animal cells.

- 1. Bioinformatics: A Practical Approach by K Mani and N Vijayaraj, Aparna Publications, Coimbatore.
- 2. Bioinformatics: Sequence, Structure and Databanks- A Practical Approach by Des Heggins and Willie Taylor, Oxford University Press.
- 3. Debra Davis "Animal Biotechnology: Science-Based Concerns"
- 4. Nigel Jenkins "Animal Cell Biotechnology: Methods and Protocols
- 5. Chawla HS, "Plant Biotechnology: A Practical Approach".
- 6. Slater A, Scott NW, Fowler MR "Plant Biotechnology: The Genetic Manipulation of Plants".

Integral University M. Tech. Biotechnology (with effect from Session 2020-2021) (Students admitted 2020 onwards)

2nd Year

4th Semester

S. No	Course Category	Subject code	Name of the Subject	Periods and Credits			Evaluation Scheme			Subject		
				T	T	Л	P C	Sessional (CA)		DOP	Total	
				L	T]	P		СТ	ТА	Total	ESE	
1.	DC	BE-699	M.Tech. Dissertation	0	0	0	4	40	20	60	40	100
2.	DC	BE-699	M.Tech. Dissertation	0	0	0	4	40	20	60	40	100
3.	DC	BE-699	M.Tech. Dissertation	0	0	0	4	40	20	60	40	100
4.	DC	BE-699	M.Tech. Dissertation	0	0	0	4	40	20	60	40	100
Tota	Total		0	0	0	16	160	80	240	160	400	

L: Lecture T: Tutorial P: Practical C: Credit CA: Continuous Assessment CT: Class Test TA: Teacher's Assessment ESE: End Semester Examination

DC: Departmental Core